

The Nickel Institute does not present forecasts or comments on nickel markets, prices or supply and demand. The Nickel Institute does promote the long-term use of nickel to contribute to a sustainable future. The unique properties of nickel mean that it has the ability to play a significant role in daily living and the industries of today and the future. For this reason the nickel industry is currently investing billions of dollars in new projects around the globe most notably in Australia, Brazil, Canada, New Caledonia and Russia. Whenever the Nickel Institute makes a public comment, any opinions expressed or implied are those of the Nickel Institute and not necessarily those of its members.

What are the needs of the water industry?

Equipment which:

- maintains the purity of the water
- is durable and low maintenance
- is cost effective
- has proven performance

Today we will illustrate how stainless steel can meet these needs.

Scottish			Nater	Hot Water	
Hospital	Day	304 1.4307	316 1.4404	Mixed 304 and 316	
Nickel pickup	0	1.7	0.6	3.8	
in water (ppb)	1	1.1	1.9	4.5	
Water analyses	2	1.3	1.9	4.3	
1250 day	3	1.4	1.3	5.5	
(3.5 year) period	4	1.7	1.6	5.7	
of stainless	11	1.5	6.1	9.3	
steel plumbing	18	<0.5	1.1	11.1	
Nickel was in all	25	1.0	0.7	15.4	
cases < 20 ppb	32	1.1	2.1	14.0	
Water Directive	180	1.0	<0.5	2.8	
maximum)	1250	0.6	<0.5	1.2	
Mo and Cr < 2 ppb throughout					

- no need to control water chemistry (except biocide)
- no need for corrosion protection system
- water purity is maintained
- equipment is durable with low Life Cycle Cost
- · Tolerance of high flow rates
- · Good strength and ductility
- Lightweight design is possible
- · Ease of fabrication
- · Readily available in many forms
- · Fully recyclable and contributes to sustainability

- Follow good practice
- Remember, like most other metals, stainless steel can corrode if not used properly!

Good practice in selection and use

- Best performance when:
 - correct grade for application
 - correct design
 - correct fabrication (off-site if possible)
 - correct installation and commissioning
 - correct operation within design envelope
 - correct maintenance
- Information on good practice is available from stainless steel suppliers and development associations

Grade selection guidelines

Chloride content of the water is most important parameter

Practical experience and tests show crevice corrosion is unlikely if:

Chloride level	Suitable grades
<200 ppm	304 (1.4307), 316 (1.4404)
200 - 1000 ppm	316, duplex 2205 (1.4462)
1000 - 3600 ppm	duplex 2205, 6% Mo superaustenitic, superduplex
>3600 ppm and seawater	6% Mo superaustenitic, superduplex

Other grades with equivalent corrosion resistance may be suitable.

For hot water or to be more conservative, use limits of 50 ppm for 304 and 250 ppm for 316

Design and fabrication

- Good housekeeping during material storage and fabrication
 - iron contamination causes cosmetic rusting
 - clients do not like it
 - prevent or remove it

Guidelines for avoiding microbiologically influenced corrosion (MIC) Well water left in tank for 3 months

- Some instances of MIC have occurred when hydrostatic pressure tests have been carried out with untreated water which has then been left in the equipment
- Always remove heat tint
- Use drinking water for hydrostatic testing

316Ti pipework in Germany

Lightweight

Welded and flanged construction

Drinking water treatment

316 for ozone generator, Italy

316L ozone/chlorine mixer, USA

	Rel	ative Total (00LF Projec	Cost Compari et using 40 foo	son Per Linea t lengths of S.S	r Foot* S. Pipe
Nominal		Pipe	Material and	Diameter	
Pipe Diameter Inches	Ductile Iron Class 51	304 Sch. 10	316 Sch. 10	2304 Sch. 10	2205 Sch. 10
6	1	1.03	1.11	1.22	1.45
8	1	1.06	1.15	1.27	1.57
10	1	1.09	1.20	1.34	1.63
12		0.82	0.91	1.02	1.26
14	1	0.69	0.75	0.96	0.99
16	1	0.69	0.76	0.97	0.98
* 2003	costs, relative	to ductile iron			

no ollay ourionto				
•No anaerobic bacter	ia			
•pH>4.5				
	Concentration en ions chlorure (nnm)			
Résistivité (Ω.cm)	200	1000	2000	15000
	-		1 4301	
> 5000			111001	
> 5000 2000 - 5000	1.440	1 / 1.4362	1.4462	1.4507
> 5000 2000 - 5000 1000 - 2000	1.440	1 / 1.4362	1.4462	1.4507 4507

Couplings and clamps

Stainless steel is widely used for couplings, tapping sleeves, spacers and restraining and repair clamps

Plumbing Growth continues in Germany – now ~15% Wide variety of fittings systems available Perception as an expensive option may be ignoring considerable time-saving during installation and more favourable costs for larger sizes.

Japanese compression fitting which shows if the joint has been tightened

The red ring disappears when the fitting is tight

Designed to avoid problems experienced with pressfittings that were not crimped and which leaked in wall cavities

Comparis Exa The Steel Construction In <i>Applications for Sta</i>	Son of ample take astitute, UI ainless Ste	Initial (In from: GIGN 4-2 Beel in the M	Costs 5-02, Janu /ater Indus	ary 1999 stry
Stainless Steel (Metric system)	Carbon Steel		Ductile Iron	
	DN150 6"NB		DN300 12"NB	
	Cost	Weight	Cost	Weight
Stainless steel	100	100	100	100
Carbon steel	208	346	234	395
Ductile iron	144	428	157	384
Saving over carbon steel	52%	71%	57%	75%
Saving over ductile iron	31%	77%	36%	74%

Life Cycle Cost = (whole of life cost) Initial Installed Costs					
 Materials 	 Fabrication 	 Installation 			
+ Costs over	r the life of t	he structure			
 Maintenance 	Replacement	Disruption			

Life Cycle Cost Example

- First stainless steel raw water pipe in India
- 300 mm x 3 mm replaced 13 mm cast iron
- Lightweight meant easy installation in hilly country
- >50 year life expected (2 replacements of cast iron in that time)
- Smooth bore meant sustained low pumping costs
- LCC analysis: 60% saving over 50 years

Life Cycle Cost Example

Lightweight bridges are used to carry potable water and pedestrians across river spans up to 632 m in Japan

85% Type 304 10% Type 316 Some 2205 near the coast

No repainting

40% cheaper over 30 years

First one built: 1983

Max pipe diameter: 0.8 m

Max weight of stainless steel: 45 tons

There are now ~3000 such bridges in Japan (10,000 tons of stainless steel)

Stainless steel is fully recyclable

- Stainless steel melted today contains about 60% recycled material
- The growth in the use of stainless steel prevents that percentage from being higher

